Practice Problems

Answers to Practice Problems, Thermo 8th Edition (Moran et al.)

Ch. 1

[1.4] (a). 61 in3, (b). 0.616 BTU, (c). 99.596 ft lb/s, (d). 50 lb/min, (e). 44.09 lbf/in2 or psi, (f). 0.54 ft3/s, (g). 45.57 ft/s, (h). 1 ton

[1.25] Hint: Perform a force balance for the piston

[1.31] Sketch

 

Ch. 2

[2.26] (a). 0.033 m3, (b). -20 kJ (in, or "work done on system")

[2.33] Graph; Process 1-2:0, Process 2-3:-554.5 kJ, Process 3-4: -400 kJ

[2.67] (a). 0.25 m3/kg (b). -50.4 kJ (in, or "work done on system") (c). -10.4 kJ (out, or "heat loss")

[2.74] W12=1,200, ΔE23=800, W23=0, ΔE34=0, Q41=1000

[2.80] (a). 0.103 m3 (b). W12 = Q12 = -18.8 kJ (c). refrigeration or heat pump cycle (must show justification!)

[2.90] Q_dotin = 0.45 kW, COP (β) = 3

[2.92] Wcycle = 10.42 kW*h, Q_dotin = 2.70 kW, Total cost = $1.04 (for 24 hours)

 

Ch. 3

[3.6] T-v and p-v diagrams: (a). Entire two-phase (saturated) region (b). Subcooled (c). Superheated (d). Subcooled (e). Solid

[3.7] (a). 0.1879 m3/kg(b). 260 oC (c). 0.15567 m3/kg

[3.10] (a). p = 3.613 bar (b). ν = 0.001029 m3/kg (c). ν ≈ 0.0319 m3/kg (d). ν = 2.556 m3/kg

[3.14] T-v and p-v diagrams: (a). Subcooled (b). Saturated (c). Superheated

[3.19] V = 0.9056 m3, vapor volume fraction = 0.977 (i.e., 97.7% by volume)

[3.23] p1 = 15.54 bar, p2 = 1.014 bar (also: x1 = 100%, x2 = 7.6%); sketch process on T-v and p-v diagrams

[3.38] (a). T = -14.66 oC, u = 153.67 kJ/kg (b). p = 5 bar, h = 2855.4 kJ/kg (c). T = 44.46 oC, v = 0.2971 m3/kg

[3.46] Q/m (heat transfer per mass) = 407.6 kJ/kg

[3.78] γ = 20

[3.92] (a). 0.0534 m3 where Z=0.86  (b). 0.05282 m3 (more accurate)

[3.112] m = 4.65 kg, Q = W = 277.3 kJ

[3.142] η = 0.204 = 20.4%

[3.144] w12=q12=38.42 kJ/kg, w23=33.72 kJ/kg, q23=0, w34=-55.39 kJ/kg, q34=-193.77 kJ/kg, w41=0, q41=172.08 kJ/kg; η = 0.08 = 8%

 

Ch. 4

[4.16] (a). m_dot1= 0.351 kg/s (b). A2= 5.1 cm2

[4.24] (a). m_dot1= 0.621 kg/s (b). v2= 52.23 m/s (c). Q_dot = 6.82 kW

[4.31] (a). 600.8 m/s (b). A1= 22.5  cm2, A2= 7.1  cm2

[4.42] Turbine power = W_dotT = 6927 kW = 6.927 MW

[4.75] (a). m_dot = 3.775 kg/min = 0.063 kg/s (b). Q_dot = -574 kJ/min = -9.6 kW

 

Ch. 5

[5.17] (a). ηmax = 0.7 Irreversibly (b). ηmax = 0.7 Reversibly (c).Wcycle=200kJ Impossible (d). ηmax = 0.75 Impossible

[5.43] (a). Impossible (b). Irreversibly (c). Reversibly (d). Irreversibly

[5.68] (a). W_dotcycle = 0.8kW (b). The minimum theoretical temperature is 246.7K

[5.74] (a). W_dotelec = Q_dotH = 12.31 kW (b). 3.52 kW (c). W_dotelec_min = 0.84 kW

 

Ch. 6

[6.3] (a). h = 1430.55 kJ/kg (b). s = 7.7622 kJ/kgK (c). s = 0.7649 kJ/kgK (d). u = 1331.94 kJ/kg

[6.7] (a). T2 = 368.8oC, Δh = 638.8 kJ/kg (b). T2 = 204.1oC, Δh = 826.8 kJ/kg

[6.15] (a). Q = -2392 kJ (heat loss) (b). ΔS = -5.5238 kJ/K

[6.41] (a). p2 = 3.33 bar (b). A-22: W = -676.2 kJ, A-20: W = -675.2 kJ (c). A-22: σ = 1.725 kJ/K, A-20: σ = 1.724 kJ/K

[6.49] Cannot occur adiabatically (must show proof!); heat loss must exist

[6.119] (a). 774 K (b). -334.3 kJ/kg (work done on system)

[6.143] (a). ηt = 0.947 (94.7%) (b). σ_dotcv = 0.465 kWK

[6.162] (a). m_dotsteam/m_dotair = 0.303 (b). m_dotsteam/m_dotair = 0.232